CS 4530: Fundamentals of Software Engineering

Module 11: Testing Larger Things

Adeel Bhutta, Joydeep Mitra, and Mitch Wand
Khoury College of Computer Sciences

© 2025 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Lesson

* By the end of this lesson, you should be prepared to:
* Design test cases for code using fakes, mocks and spies
* Explain why you might need a test double in your testing
* Explain why you might need tests that are larger than unit tests
* Explain how large, deployed systems lead to additional testing challenges

Why do we test?

* Unit Testing
* Does the SUT satisfy its specification?

* Integration Testing

* Do the SUT and its context work correctly together?

* Acceptance Testing

* Does the SUT satisfy the customer
e “Good” test suite answers: Are we building the right system ?

Unit Testing

What does it mean for a unit test to
succeed?

 Test Oracles define the criteria for a test to succeed.
Possible kinds of test oracles

* Function returns the exact “right” answer
* Function returns an acceptable answer

* Returns the same value as last time

* Function returns without crashing

* Function crashes (as expected)

* Function has the right effects on its environment <

Story so far: Tests Check Return Values

test('addStudent should add a student to the database', () => {
// const db = new DataBase ()
expect(db.nameToIDs('blair')).toEqual([])

const idl = db.addStudent('blair’);

expect(db.nameToIDs('blair')).toEqual([id1l])
1)

Challenge: How to test the ProducerClock?

clockWithObserverPattern.test.ts

export interface IClockWithListeners {
reset():void resets the time to @

tick():void // increment time and notify all listeners

add a listener and 1nitialize 1t with the current time
addListener(listener:IClockListener):void

} :

export interface IClockListener {
// @param t - the current time, as reported by the clock

notify(t:number):void

¥

export class ProducerClock implements IClockWithListeners {

¥

Test doubles replace uncontrollable things

Network
Resources

=
L T T T T
o T
—
L
—
B g v e e e e e e e e e
e T
o

e
e e T T T T T T

—y
L - - o o e e e e e e e e e e e e e e e e

ey
e T T T
L T
Sy’

_— T T T
Lo

—
—

41 Data base S Y Mo caw even nse test

P s s s S dO(AW@S MSM@ \-{O(/W SMT

& .. | AR °

“Test Doubles” Stand In For Other
Components

* Act as a stand-in for components, allowing for
testing in isolation

* Fakes: Replace client implementations with
dummies for testing

* Mocks: Automatically-generated fake
implementations for an interface

* Spies: Automatically-instrument internals of
objects, classes or modules

You could test the Producer Clock with a

hand-built test double (a "fake")

export interface IClockWithListeners {
reset():void resets the time to ©

tick():void // increment time and notify all listeners

add a Iistener and iInitialize it wi e current Time
addListener(listener:IClockListener):void

}

clockWithObserverPattern.test.ts

class ClockListenerForTest implements IClockListener {
private time : number = 0
constructor (private masterClock:IClockWithListeners) {
masterClock.addListener(this)
}
notify (t:number) : void {this. time = t}
getTime () : number {return this. time}

Now we can test using the fake observer

import { ProducerClock } from "./clockWithObserverPattern”;

const clockl = new ProducerClock

const listenerl = new ClockListenerforTest(clockl) clockWithObserverPattern.test.ts

describe("tests for ProducerClock", () => {

test("after reset, listener should return 0", () => {
clockl.reset()
expect(listenerl.getTime()).toBe(09)

1)

test("after one tick, listener should return 1", () => {
clockl.reset(); clockl.tick()
expect(listenerl.getTime()).toBe(1)

1)

test("after two ticks, listener should return 2", () => {
clockl.reset(); clockl.tick(); clockl.tick()
expect(listenerl.getTime()).toBe(2)

1)
1)

Does using the fake listener solve the

problem?

class ClockListenerForTest implements
IClockListener {
private time : number = 0
constructor (private
masterClock:IClockWithListeners) {
masterClock.addListener(this)
}
notify (t:number) : void
{this. time = t}
getTime () : number {return
this. time}
}

e Good news:
e |t works!

* |t doesn’t require learning other
libraries

e Bad news:

* |t’s a maintenance burden (what if new
methods are added to IClockListener?)

e |t took manual effort to write

* Richer fakes (e.g. track how many
times a method called) would take
even more effort to write

Mocks are automated fakes

* Jest’s mocks return “undefined” by default (can be customized), and
track calls to the function

test("simplest mock behavior", () => {
const mockFunctionl = jest.fn();

const resultl = mockFunctionl("17");
const result2 = mockFunctionl("42")

expect(resultl).toBeUndefined();
expect(result2).toBeUndefined()

expect(mockFunctionl).toHaveBeenCalled();
expect(mockFunctionl).toHaveBeenCalledTimes(2);

expect(mockFunctionl).toHaveBeenCalledWith("17");
expect(mockFunctionl).toHaveBeenCalledWith("42")

})s

Jest’s Mock API: https://jestjs.io/docs/mock-function-api

You can customize your mock in many ways

test("customizing mock functions", () => {

})s

// you can specify the the return value
const mockFunction3 = jest.fn();
mockFunction3.mockReturnValue("baz");

expect(mockFunction3(17)).toBe("baz");
expect(mockFunction3).toHaveBeenCalledWith(17);

// or give the mock an implementation
const mockFunction2 = jest.fn()
mockFunction2.mockImplementation((n: number) => n + n);

expect(moc

ex
ex
ex

nect (moc
nect (moc

nect (moc

<
<
<
<

~unction2(3)).toBe(6);
~unction2(14)).toBe(28)
~unction2).toHaveBeenCalledWith(3);

~unction2).toHaveBeenCalledWith(14);

simpleMocks.test.ts

MockReset erases history; returns
implementation to ‘undefined

// you can also reset the mock's history and implementation \\\\\\:i>

expect(mockFunction2).not.toHaveBeenCalledWith(14);

mockFunction2.mockReset() <

https://jestjs.io/docs/mock-function-api
https://jestjs.io/docs/mock-function-api
https://jestjs.io/docs/mock-function-api
https://jestjs.io/docs/mock-function-api
https://jestjs.io/docs/mock-function-api

You can mock Classes and Interfaces using
J ESt_ M O C k_ EXte N d ed https://www.npmjs.com/package/jest-mock-extended

import { mock, mockClear } from 'jest-mock-extended’; clockWithObserverPatternMock.test.ts

import { IClockListener, ProducerClock } from './clockWithObserverPattern';

const clockl = new ProducerClock();
//Automatically create an implementation of IClLockRListener, each method 1s a mocR function

const listenerl = mock<IClockListener>(); <

clockl.addListener(listenerl); Construet a \/V]()&l([iS+6M6V

describe('tests for ProducerClock', () => { (1 lhﬂ@l)

beforeEach(() => {
mockClear(listenerl); ¥/CLear the mock function's history, but Leave the mocR implementation as 1s

})s

test('after one tick, listener should have been notified with 1', () => {

clockl.reset();
clockl tick(); All the methods of
expect(listenerl.notify).toHaveBeenLastCalledWith(1l) ;< —r :

}); T ClockListener are wmocked.

test('after two ticks, listener should have been notified with 1 and Z5 T =3
clockl.reset();
clockl.tick();
expect(listenerl.notify).toHaveBeenLastCalledWith(1);
clockl.tick();
expect(listenerl.notify).toHaveBeenLastCalledWith(2);
expect(listenerl.notify).toHaveBeenCalledTimes(2);

1)
1)

https://www.npmjs.com/package/jest-mock-extended
https://www.npmjs.com/package/jest-mock-extended
https://www.npmjs.com/package/jest-mock-extended
https://www.npmjs.com/package/jest-mock-extended
https://www.npmjs.com/package/jest-mock-extended

Unlike mocks, spies instrument existing
Implementations

* Consider cases where you don’t want a complete
fake, but do want to check side-effects:

e What was sent on the network?

* How many times was a problem logged? Sy

* What was inserted in the database? "remembers”
 Jest can automatically instrument existing code to

make it into a “spy” —a mock but with the original

implementation Peal

Implementatiov
IS used

Use jest.spyOn to create a spy on an object

import { ClockListener, ProducerClock } from './clockWithObserverPattern’;

const clockl = new ProducerClock();
const clockClient = new ClockListener(clockl);

const notifySpy = jest.spyOn(clockClient, ‘'notify’); // Spy on calls to notify on this clock

describe('tests for ProducerClock', () => {

beforeEach(() => {
notifySpy.mockClear(); // Clear the mock function's history

1)

test('after one tick, listener should return 1', () => {
clockl.reset();
clockl.tick();
expect(notifySpy).toHaveBeenlLastCalledWith(1l);

1)

test('after two ticks, listener should return 2', () => {
clockl.reset();
clockl.tick();
expect(notifySpy).toHaveBeenlLastCalledWith(1l);
clockl.tick();
expect(notifySpy).toHaveBeenlLastCalledWith(2);
expect(notifySpy).toHaveBeenCalledTimes(2);

})s
})s

clockWithObserverPatternSpy.test.ts

Spies can be used even when you can't
CO I"l t I"O I th e S UT Syntax: jest.spyOn(object, methodName)

* You can specify any object, and any method name (even private
methods)

* Spy on objects or entire modules
* The spy logs all calls to that method of that object or module

* The call to the original still gets made, unless the spy explicitly
supplies a substitute

e we'll illustrate this a few slides from now.

Let’'s use mocks and spies to test the http
client from the async module

export class Echo { EchoClass.ts

/**
* @argument a string
* @returns a promise to return the same string
* @requires axios
* @calls https://httpbun.org/get?answer=${str}
*/

public static async echo(str: string): Promise<string> {
const res = await axios.get(https://httpbun.org/get?answer=${str});
return res.data.args.answer;

}

Create a spy on (axios, 'get’)

import { Echo } from './EchoClass'; echo.test.ts

// etc...

test('just spying on a function runs the original', async () => {
const spyl = jest.spyOn(axios, 'get');
const str = '34°;
const res = await Echo.echo(str);
expect(res).toEqual(str);
expect(spyl).toHaveBeenCalled();
expect(spyl).toHaveBeenCalledTimes(1);

1)

* GET call was made to https+/Ahttpbin-org httpbun.org

Next step: define a mock for the axios call

echo.test.ts

async function mockAxiosCall(url: string) {
return { data: { args: { answer: url.split('=")[1] } } };

}

// Hmm, we better test mockAxiosCall!

describe('tests for mockAxiosCall', () => {
test('mockhttpbun should return its argument', async () => {
const url = 'https://httpbun.org/get?answer=33"
const res = await mockAxiosCall(url);
expect(res).toEqual({ data: { args: { answer: "33" } } });

})s
1)

Now install the mock, so the 'get’ doesn't

get

called.

echo.test.ts

test('mock axios.get so httpbin is not called', async () => {

1)

jest.resetAllMocks();

const spyl = jest.spyOn(axios, 'get').mockImplementation(mockAxiosCall);

const str = '34°;

const res = await Echo.echo(str);
expect(spyl).toHaveBeenCalled();
expect(res).toEqual(str);

What if we wanted to test a client of echo?

* But we didn't want to issue any http requests

import { Echo } from './EchoClass’; echoClient.ts

/** calls echo twice and concatenates the results */
export async function echoClient(str: string) {
const resl = await Echo.echo(str);
const res2 = await Echo.echo(str);
return resl + res2;

¥

Solution: create a mock for Echo

import { echoClient } from './echoClient’;

describe('tests for echoClient', () => {

beforeEach(jest.resetAllMocks); echoClient.test.ts

beforeEach(() => {
// mock echo with a correct return value
jest.spyOn(Echo, 'echo').mockImplementation(async (str: string) => str)

// mock axios.get to always throw an error;
// 1f any of our tests call the real axios.get, they will fail with the error
jest.spyOn(axios, 'get')
.mockImplementation(() => {
throw new Error('axios.get should not be called');
1)
test('echoClient should return its argument twice', async () => {
const str = "345°;
const res = await echoClient(str);
expect(res).toEqual(str + str);

})s

N\

Test Doubles Have Weaknesses

* Some failures may occur purely at the integration
between components:

Did we correctly

* The test may assume wrong behavior (wrongly encoded ‘\ model the

by mock)

* Higher fidelity mocks can help, but still just a snapshot of
the real world

e Test doubles can be brittle:

belhnavior of
Nt+pbun?

* Spies expect a particular usage of the test double;

 The test is "brittle" because it depends on internal
behavior of SUT; \

* Potential maintenance burden: as SUT evolves,

mocks must evolve.

Not just i+s TO
belnavior, but
also 1S
dependencies

25

What if we didn't want to make assumptions
about how httpbun behaves?

* We'd need to actually call httpbun.
* This is no longer a unit test; it's an integration test
* Which brings us to our next topic.

Integration Testing

But some bugs are observable only when
multiple components interact.

* These are usually because one module has
made incorrect assumptions about some
other module

* Unit tests won't reveal such bugs

* Mocks won’t help, either (since they may
incorporate our incorrect assumptions)

* So you really need integration tests

28

Integration tests may be larger, even
enormous

* Does the presence of other
jobs on our server change the
behavior of our program?

* Does the presence of the other
servers change the behavior of

our program?

29

Integration tests can be done in many ways

P W » All at once ("Big Bang")

Module 1 @ @ . TOp-dOWh
@ * Bottom-up
SYSTEM Module 4 .
» * Middle-out
Module 7 ' | — @ * Top-Bottom-Middle
/ . etc., etc., etc.
Module 6 / \ Module 5

$® €

Testing Distribution (How much of each kind
of testing we should do?)

Pyramid
Test Pattern

Manual Tests

Integration
15%

Automated
GUI Tests

Integration
Tests

Software Testing
Ice Cream Cone
Antipattern

Unit 80%

From SoftEng @ Google Chapter 11

* https://learning.oreilly.com/library/view/software-engineering-
at/9781492082781/ch11.html#testing overview

31

How big is my test? Google’s Classification

* Small: run in a single thread, can’t sleep, perform 1/O or
make blocking calls

* Medium: run on single computer, can use
processes/threads, perform I/O, but only contact
localhost

* Large: Everything else

"Software Engineering at Google: Lessons Learned from Programming Over Time," Wright, Winters and Manshreck, 2020 (O'Reilly)

32

Integration Tests can be Flaky

* Flaky test failures are false alarms

* Most common cause of flaky test failures:
“async wait” - tests that expect some o

asynchronous action to occur within a timeout Collectio
1%

Floating Point

* Ul Testing is often flaky and slower 39%
Random
* Good tests avoid relying on timing 3%ﬁme\\.\
1%
* Good tests avoid relying on the order in which
the tests are run ol

Resource Leak
10%

[Luo et al, FSE 2014 “An empirical analysis of flaky tests”]

Flaky Test Example: Async/Wait

* Most common root cause of flakiness

 Difficult to avoid, but there are mitigations:

* Have more “small” tests that don’t require
concurrency

* Ensure sufficient resources available for
running tests

* Embed reasonable error detection to classify -

test failures as likely to be “flaky” vs true
failures

Test fails!

Avoiding the GUI can help reduce flakiness

* GUI makes your tests slow.
* To help reduce flakiness:

* find a way to fire real HTTP requests without the
browser (e.g., supertest library)

e actual dependencies instead of mocks
* Setup the test data before every test

35

“"End-to-End” Tests can be Enormous

Check:
confirmation
email received?

Log in to Search for

p— e Add to cart === Checkout

Amazon.com product

Check: inventory
updated?

Check:
fulfillment
request sent?

* Most effective end-to-end tests focus on high value
user interactions (Ul Testing)

Acceptance Testing

Acceptance Tests can be formulated as
scenarios

* Acceptance tests are written to verify behavior from a user’s
perspective.

* The focus is on treating the application as a black-box
* Tests may be specified as given-when-then scenarios:

given there's a logged in user

and there's an article "bicycle”

when the user navigates to the "bicycle” article's detall page
and clicks the "add to basket" button

then the article "bicycle"” should be In their shopping
basket

https://docs.cypress.io/guides/end-to-end-testing/writing-vour-first-end-to-end-test

38

https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test

But how to make these human-readable
scenarios into executable tests?

* Scenarios like the one above are readable by
humans (e.g. customers)

* But they are not directly executable
* Tools like Cypress help fill this gap
* link on module page

Deployed systems create even more testing
challenges

* Clients believe “how it is now is right”,
* Not “how the APl intended it to be is right”
* Writing thorough test suite is even harder, less useful
* What is a “breaking change”?
e Still: vital to detect breaking changes
 Examples:
* Detailed layout of GUIs
* Side-effects of APIs, particularly under corner-cases

40

Mock System-Level Components with
Capture/Replay

* Record the APl requests and responses that clients
make

* Test new versions of the API by identifying requests
that result in different responses ("breaking
changes")

Production traffic Current version

Clients (created Capture/Replay of API

by many third Production traffic Proxy for

parties) Testing
, Next version of
Replay production

traffic for testing

API

https://www.tradeweb.com/our-markets/data--reporting/replay-service/

https://www.tradeweb.com/our-markets/data--reporting/replay-service/
https://www.tradeweb.com/our-markets/data--reporting/replay-service/
https://www.tradeweb.com/our-markets/data--reporting/replay-service/
https://www.tradeweb.com/our-markets/data--reporting/replay-service/
https://www.tradeweb.com/our-markets/data--reporting/replay-service/
https://www.tradeweb.com/our-markets/data--reporting/replay-service/
https://www.tradeweb.com/our-markets/data--reporting/replay-service/

Snapshot Tests Can Detect GUI Changes

* The first time the test runs, it saves a "snapshot” of
the rendered GUI

e Subsequent runs will fail if the snapshot changes

" 1 — — T .
import renderer from 'react-test-renderer'; _ﬁnk_react_test_js

import Link from '../Link'; e renders correctly

received) .toMatchSnapshot

' v v —
1t ("renders CorreCtly r 0 > Snapshot name: "renders correctly 1°
const tree = renderer
: - Snapshot - 2

.Create (<Link + Received + 2
page="http://www.facebook.com">Facebook</Li
nk>)

.toJSON () ; - href="http://www. facebook.com"

+ href="http://www.1nstagram.com"

expect (tree) .toMatchSnapshot () ;
b) s

Facebook
+ Instagram

Product Owners can Assess Visual Snapshot
Tests

e Capture a visual snapshot of an application under a state

* If that snapshot changes, produce a visual report for manual sign-off

'''''''''''''''''''''''''''''''''''
e e e n """ e " e e ot im Ey o Rusai wtions L e e e
...................................
................................
|||
.........................

..................................
............................... ...- .'.'.
................................
''''''''''''''''''''''''''''''''' e i o g Miacorw D - SRR TN R s o e e Do
..
.....................................
......................................

.....................
P) Al Ntk gueenofseos - B el Al Nk e blrguenotseos. B e
e e e e (g s R e,
'''''''''' *-'-'-'- . |'|'|'1'|'+ e T e
................................
..
...
...
......................................
.....................................
......................................

e R Nt withampentohe i LSRR, v with s o e
S e e, Mmshuvineithancesenl kel S e, Mimshuvimsihacealnherzic S e
..
_____________________________ ¥_._._._._. .'.'.'.'.'+'.'.'-'-'-
..... +....- O e i o
................................
......................
............ " ‘s e
..................................
......................................
.....................................
......................................

R — e
............
e Bullying amd Fallures at NEIS trust exposcd e, fulrendplemsafiSnstegesed - B ey
...
........................... + e
----- ‘-----+..... e e
................................
..................................

https://github.com/newsuk/AyeSpy

https://github.com/newsuk/AyeSpy

Learning Objectives for this Lesson

* You should now be prepared to:

Design test cases for code using fakes, mocks and spies

Explain why you might need a test double in your testing

Explain why you might need tests that are larger than unit tests

Explain how large, deployed systems lead to additional testing challenges

44

	Module 11 Testing Larger Things
	CS 4530: Fundamentals of Software Engineering��Module 11: Testing Larger Things
	Learning Objectives for this Lesson
	Why do we test?
	Unit Testing
	What does it mean for a unit test to succeed?
	Story so far: Tests Check Return Values
	Challenge: How to test the ProducerClock?
	Test doubles replace uncontrollable things with things that you do control
	“Test Doubles” Stand In For Other Components
	You could test the Producer Clock with a hand-built test double (a "fake")
	Now we can test using the fake observer
	Does using the fake listener solve the problem?
	Mocks are automated fakes
	You can customize your mock in many ways
	You can mock Classes and Interfaces using Jest-Mock-Extended
	Unlike mocks, spies instrument existing implementations
	Use jest.spyOn to create a spy on an object
	Spies can be used even when you can’t control the SUT
	Let’s use mocks and spies to test the http client from the async module
	Create a spy on (axios, 'get')
	Next step: define a mock for the axios call
	Now install the mock, so the 'get' doesn't get called.
	What if we wanted to test a client of echo?
	Solution: create a mock for Echo
	Test Doubles Have Weaknesses
	What if we didn't want to make assumptions about how httpbun behaves?
	Integration Testing
	But some bugs are observable only when multiple components interact.
	Integration tests may be larger, even enormous
	Integration tests can be done in many ways
	Testing Distribution (How much of each kind of testing we should do?)
	How big is my test? Google’s Classification
	Integration Tests can be Flaky
	Flaky Test Example: Async/Wait
	Avoiding the GUI can help reduce flakiness
	“End-to-End” Tests can be Enormous
	Acceptance Testing
	Acceptance Tests can be formulated as scenarios
	But how to make these human-readable scenarios into executable tests?
	Deployed systems create even more testing challenges
	Mock System-Level Components with Capture/Replay
	Snapshot Tests Can Detect GUI Changes
	Product Owners can Assess Visual Snapshot Tests
	Learning Objectives for this Lesson

